CH₄(v) and H₂(v) Kinetics in Nanosecond-Pulsed Discharge Generated in a Preheated Methane Mixture

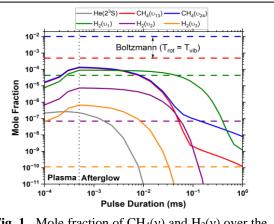
T. Srivastava¹, Z. Chang¹, M. Adil¹, Y. Ju^{1,2}

¹Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA

Abstract: We report on the role of vibrationally excited CH_4 and H_2 in a nanosecond pulsed $He/CH_4/H_2$ discharge generated in a preheated gas using CHEMKIN. Our modelling suggests that while $CH_4(v)$ contribution towards H_2 formation is low, the vibrational population is significantly underpredicted, and that $H_2(v)$ can contribute towards product selectivity.

1. Introduction

Plasma reforming of methane has attracted a lot of interest due to its ability to drive otherwise kinetically difficult chemistry at lower temperatures [1]. However, the kinetics of plasma-produced species in the context of nspulsed discharge, especially that of vibrationally excited species, are not well understood.


Here we use CHEMKIN model for a ns-pulsed discharge kinetics with preheated gas (~ 600 K). Initial findings suggest that (a) the vibrational populations, especially that of $CH_4(v_{24})$ are significantly underpredicted and (b) $H_2(v)$ can affect the decay of atomic carbon, affecting the yield and selectivity of carbon products produced.

2. Methods

A 0-D Plasma PSR transient model was used to simulate the nanosecond pulsed discharge in a preheated 95% He/2.5% CH₄/2.5% H₂ mixture (T = 600 K, P = 250 Torr, ~ 200 sccm flow, $V = 2 \text{ cm}^3$, 2 kW plasma input power, 500 ns pulse, 1 kHz frequency). The reaction mechanism and thermodynamic data used were the same as [2], with the electron-impact collision rate coefficients being approximated as equivalent Arrhenius form dependent on electron temperature obtained from fitting the rate coefficients as a function of electron temperature for a given reaction threshold energy calculated from BOLSIG+ [3] for 2 eV \leq T_e \leq 7 eV range. R² \geq 0.8 were obtained for the equivalent Arrhenius fitting for all reactions except for C₃H₈ dissociation reactions, which is a minor species in this case. The electron temperatures predicted by the simulation during the plasma pulse ranged between 2 and 6 eV, justifying the assumed range for the fitting.

3. Results and Discussion

Comparing the total rate of production of H₂ the contribution of vibrationally excited methane was found to be up to ~ 0.8% in the afterglow. On the other hand, > 90% of C consumption during the early afterglow was predicted to be due to H₂(v) (C + H₂(v) \rightarrow CH + H), which can affect the selectivity of carbon products. It was observed that the gas temperature can reach up to ~ 930 K at quasi-steady state. Fig 1 shows the mole fraction variation of total vibrational excitation of the v₁₃ and v₂₄ modes of CH₄(v) and v = 1-3 levels of H₂(v) along a quasi-steady state pulse and compares with the mole fractions assuming Boltzmann Vibrational Distribution at T_{vib} = T_g calculated from the respective vibrational partition functions [4]. We observe that the methane vibrational populations are massively

Fig. 1. Mole fraction of $CH_4(v)$ and $H_2(v)$ over the duration of a quasi-steady state pulse (dashed line represents Boltzmann distribution at $T_{vib} = T_g$)

underpredicted and even though H_2 exhibits vibrational excitation, relaxation is overpredicted. This suggests that the current model underpredicts vibrational kinetics and therefore experimental investigation is necessary, which would be discussed in detail during the presentation.

4. Conclusion

The modeling predictions suggest a possible underprediction of the role of vibrationally excited species, especially CH_4 while vibrationally excited hydrogen can affect the yield and selectivity of carbon products produced, therefore demanding further experimental evidence to be discussed.

Acknowledgement

This work is supported by the U.S. Department of Energy, Office of Science Energy Earthshot Initiative as part of Plasma-Enhanced H_2 Production (PEHPr) Energy Earthshot Research Center (EERC) at Princeton Plasma Physics Laboratory under contract DE-AC0209CH11466.

References

- [1] J. Feng *et al.*, *Advanced Science*, **9**, 34 (2022).
- J. Sun and Q. Chen, J. Energy Chemistry, 39 188– 197 (2019)
- [3] G. J. M. Hagelaar and L. C. Pitchford *Plasma* Sources Sci Technol, **14**(4) 722–733 (2005)
- [4] T. Butterworth *et al.*, *Plasma Sources Sci Technol*, **29**(9) 095007 (2020)